PHYSICAL REVIEW E

VOLUME 51, NUMBER 3

MARCH 1995

Percus-Yevick approximation for fluids with spontaneous partial order

Hua Zhong and Rolfe G. Petschek
Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-7079
(Received 18 July 1994; revised manuscript received 30 September 1994)

In this paper we present a Percus-Yevick approximation which can be applied to a system in which
a phase transition has occurred, resulting in spontaneous breaking of a continuous symmetry and
partial spontaneous order. Previous methods have allowed calculations only for molecules which are
in the isotropic phase or all perfectly aligned. For the orientationally disordered isotropic phase,
our technique gives identical results to previous work. The appropriate treatment for systems with
spontaneously broken continuous symmetry has been appreciated for some time in the magnetic and
field theoretic literature. We adapt these treatments to the anisotropic fluid system with a diagram-
matic implementation of a Ward identity. This technique is demonstrated on a simplified model of a
nematic liquid crystal in which molecules can move in three dimensions and have a two-dimensional
“orientation” interaction through a pair potential which depends only on the molecular separation
and relative orientation. We solve the Ornstein-Zernike equation with the modified Percus-Yevick
closure for the pair correlation functions of the orientationally anisotropic system. Our equations
correctly result in Goldstone modes, characteristic of systems with spontaneously broken symmetries.

PACS number(s): 61.30.Gd, 05.40.+j

I. INTRODUCTION

The pair correlation function plays a very important
role in physics. It is measurable by scattering exper-
iments and virtually all thermodynamic properties can
be expressed in terms of it if the particles in systems in-
teract through pairwise forces. Integral-equation meth-
ods, which generally involve solving the Ornstein-Zernike
equation with the Percus-Yevick or hypernetted-chain
closure approximation, have led to reasonably good re-
sults for the pair correlation functions of classical simple
liquids [1]. More recently, these methods have been used
to study the structural properties of the isotropic flu-
ids of hard nonspherical particles [2], and spherical and
nonspherical isotropic dipolar fluids [3,4]. Using the cor-
relation functions obtained in the isotropic phase, the
isotropic-nematic phase transition is also studied [4, 5]
by applying the stability criterion and the second-order
density functional theory. For anisotropic fluids, only
cases where the molecules are all perfectly aligned in one
particular direction have been studied [6]. Our goal is to
extend the integral-equation method to systems such as
nematic liquid crystals, having partial spontaneous or-
der as a consequence of sufficiently strong interparticle
interactions.

Spontaneous symmetry breaking is particularly well
studied in magnetic systems below the critical temper-
ature. The Hamiltonian in some model n-dimensional
ferromagnets is invariant under the group of rotations in
spin space, O(n) if the external field and the spins are
simultaneously rotated. When the field is zero any spon-
taneous magnetization breaks a continuous symmetry in
such a ferromagnet in which n > 2. The direction of the
magnetization is not predetermined and there exist spin
wave excitations, or Goldstone modes, which rotate the
direction of the magnetization without any energy cost.
Therefore in this and other systems with spontaneously

1063-651X/95/51(3)/2263(9)/$06.00 51

broken continuous symmetries some susceptibilities are
infinite.

The invariance of the Hamiltonian leads to the so-
called Ward identities [7, 8]. The study of the singular
behavior, induced by the Goldstone modes, in equation
of state and susceptibilities near the coexistence curve
has attracted theoretical interest for many years. Analo-
gously, the essential feature of the Goldstone modes in a
nematic fluid system is that under a uniform rotation the
system is unchanged. This implies that the susceptibil-
ity (or density response function) is infinite in the limit
of zero wave vector. As typical (e.g., Ornstein-Zernike)
methods calculate the inverse susceptibility, it seems
clear that careful treatment of these modes is prudent
as small errors in the correct answer, resulting in a neg-
ative rather than zero inverse susceptibility, will clearly
lead to unphysical results. We show that a Ward iden-
tity, which relates the one-point probability density to an
integral of the two-point correlation function, can be im-
plemented with a modified version of the Percus-Yevick
approximation [9] and correctly results in exactly zero
inverse susceptibility for the Goldstone modes. We il-
lustrate our theory first with a simple non-self-consistent
calculation which demonstrates the relationship between
the Ward identity and the Goldstone modes. We then
apply the method using the modified Percus-Yevick ap-
proximation in which the pair correlation functions are
determined self-consistently given an interaction poten-
tial between the two molecules.

Previous studies have suggested [4, 5] that the Percus-
Yevick approximation does not lead to isotropic-nematic
phase transitions. This conclusion was drawn by sub-
stituting the direct correlation functions of the isotropic
state obtained from solving the Ornstein-Zernike equa-
tion with the Percus-Yevick closure into a stability cri-
terion or into a truncated density functional formula of
the second order. We believe a more direct and more
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reliable way to study the isotropic-nematic phase transi-
tion is through examing the probability functions of both
the isotropic and the nematic phase directly. As far as
we know the single-particle probability function or the
correlation function of a nematic system with a partial
order has never been obtained using the integral-equation
method in any of the previous studies. In this paper, we
show how one can apply a modified Percus-Yevick clo-
sure to self-consistently determine the probability func-
tion and the correlation function of such a partially or-
dered system, resulting from a spontaneous broken sym-
metry after a phase transition has occurred. Only simple
model calculations are illustrated here. Phase transition
studies with Percus-Yevick and/or hypernetted-chain ap-
proximations will be conducted in more realistic model
calculations in the future. In our simple model calcula-
tions we assume that the molecules, having axial sym-
metry, move in three dimensions yet their orientations
are confined to a plane, i.e., the orientation directions
can be specified in terms of an angle 6 with respect to a
fixed axis, rather than the more general case where the
orientation must be specified by a set of Euler angles,
Q = (0,¢,x). Moreover, the pair potential u(r,0 — ')
is assumed to depend only on the spatial separation be-
tween the molecules, 7, and their relative orientations,
0—¢.

The paper is organized as follows. In the next sec-
tion we describe a Ward identity in a nematic fluid sys-
tem with spontaneously broken symmetry and discuss
the modified Percus-Yevick closure. Section III contains
the model calculations and Sec. IV is a summary.

II. THEORY

A. Definitions

We follow the standard definitions [10] for the n-
particle reduced probability densities and correlation
functions. Assuming the spatial coordinate and the ori-
entation are the only relevant variables to specify a par-
ticle, the single-particle probability density p(1) can be
written as

p(1) = p(7,Q2) = 2(5(7’— 73)6( — Q)), (1)

where 7; and 2; are the spatial coordinate and the orien-
tation of the ith particle, and () stands for thermal av-
erage. Specifically, in a nematic liquid crystal the single-
particle probability density p is only a function of the
orientation of the particles, Q.

The two-particle density p(?)(1,2) is the probability of
finding two particles 7 apart (translational symmetry is
assumed) with orientations £ and €, respectively. Ex-
plicitly, it is defined as

PP (1,2) = p®(7,Q,Q)
=) (6(7)8( — )S(75 — ME(Q; — X)).

i%
(2)
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The total correlation function, h(1,2), or h(7,Q,9Q’) is
defined to be

h(1,2) = h(7,Q,2') = p~ (@)~ (2)p? (7,2, 2) - 1.
3)

The direct correlation function c¢(1,2) is defined through
the Ornstein-Zernike equation,

h(1,2) = ¢(1,2) + /d3c(1,3)p(3)h(3,2). (4)

To compute the correlation functions, it is more conve-
nient to write the Ornstein-Zernike equation in Fourier
space,

h(k,Q,Q') =c(k,Q,Q)
+/dnlc(/},n,nl)p(nl)h(k‘,Ql,Q'). )

For simple isotropic fluids, p(2) = po, the above
Ornstein-Zernike equation is often solved in conjunction
with the Percus-Yevick or hypernetted-chain closure for
the correlation functions. To understand the closures and
later implement the Ward identity, it is useful to briefly
review the Ursell-Mayer perturbation expansion [11,12]
in diagrammatic terms.

We follow the notations used in Ref. [1] and review only
basic concepts here. In statistical mechanics, diagrams
are often used to conveniently represent complicated and
many-dimensional integrals over the particle coordinates
which appear in the pair correlation functions and many
other important physical quantities. They are commonly
drawn as white circles (root points), black circles (field
points), and bonds. In the following discussion, if not
specified otherwise, a factor of p(1) is associated with
each black circle and a factor f(1,2) = exp[—Bu(1,2)]—-1
is associated with each bond, where 3 = 1/kgT is the in-
verse temperature and u(1,2) is the interparticle poten-
tial. A circle can also be a (1) connecting circle: removal
of such a circle causes the diagram to become discon-
nected; (2) articulation circle: removal of such a circle
causes the diagram to separate into two or more parts of
which one of them contains no white circle; or (3) nodal
circle: one through which all paths between two partic-
ular white circles pass. A diagram is called irreducible if
it is free of articulation circles. A bridge diagram is free
of nodal circles and contains two white circles which are
not an articulation pair and are not connected by a bond.
For example, the direct correlation function ¢(1,2) is the
sum of the diagrams that consist of two white circles, 1
and 2, black p circles, f bonds, and which are free of
connecting circles. Some of the diagrams in ¢(1,2) which

are allowed in both Percus-Yevick and hypernetted-chain

approximations are shown in Fig. 1(a). The total corre-
lation function h(1,2) is the sum of all simple diagrams
that consist of two white circles, 1 and 2, black p circles, f
bonds, and which are free of articulation circles. Approx-
imations are usually made when calculating h(1,2). If all
the bridge diagrams [a typical bridge diagram is shown in
Fig. 1(b)] are ignored, one obtains the hypernetted-chain
closure,
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(2)

(b)

(©)

FIG. 1. (a) Some diagrams in the direct correlation func-
tion ¢(1,2) which are included in both Percus-Yevick and
hypernetted-chain approximations. (b) A typical bridge dia-
gram which is excluded in Percus-Yevick or hypernetted-chain
closure. (c) The function v(1), which is defined in the text,
in terms of diagrams. (a) and (c) also illustrate that a func-
tional derivative of v with respect to p in the Ward identity
is simply to replace any single black circle in (c) with a white
one.

h(1,2) = Bu(1,2) + ¢(1,2) + In[h(1,2) + 1]. (6)
Further, if all other diagrams without direct links be-
tween the two white circles are omitted, the Percus-
Yevick closure,

c(1,2) = £(1,2)[1 + h(1,2) — ¢(1,2)], (7
is obtained. These (and other) closures combined
with the Ornstein-Zernike equation have been solved for
isotropic fluids as well as fluids with perfect alignment.
We show in the following how we can extend the Percus-

Yevick approximation to fluids with partial orientational
order due to spontaneous symmetry breaking.

B. Ward identity

In a nematic system with spontaneously broken sym-
metries the Goldstone modes are present. In such a
system a simple uniform rotation of the direction of
the directors does not change the energy of the sys-
tem. Therefore the susceptibility is infinite at the
k — 0 limit. As the susceptibility and the pair cor-
relation function are closely related [1], this implies
that the total correlation function h(k,,€’) also be-
The implication for the di-
rect correlation function c(E,Q,Q’) can be examined
through the Ornstein-Zernike equation. It is convenient
to define H(k,Q,Q) = p'/2(Q)p'/2()h(k,Q,Q') and
C(k,Q, Q) = pt/2(Q)pY2(Q')c(k,Q, Q). The Ornstein-
Zernike equation, Eq. (5), can then be written in a sym-
metric form,

comes infinite as k& — 0.
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H(k,Q,Q) =C(k,Q,Q)
+/dQlc(E,Q,Ql)H(E,Ql,Q’). (8)

Taking both H and C’ as integral oPerators symbolically
we can write h ~ ~ (1-C) "C. Clearly, to guar-
antee that the Goldstone modes are treated correctly, so
that h(E —0,9Q,9') - oo, we need to ensure that the
operator C has a unit eigenvalue.

Mathematically, the eigenequation of the integral op-
erator C is written as

/dQlc(E,Q,Ql)\II,-(E,Ql) — xR EQ. ()

This is a homogenous Fredholm equation of the second
kind [13]. The kernel C(k,2,Q;) defined above is real
and symmetric with respect to . Hilbert-Schmidt the-
ory has shown that if the kernel is real and symmet-
ric, the integral equation has real eigenvalues A; and
the corresponding eigenfunctions are orthogonal, as for
other Hermitian operators. These eigenfunctions form
a complete set, in particular, the kernel can be written
as C(k,Q,9;) = 3, Mi(E)¥,(k, Q) ¥;(E, ;). If one also
expands H(E, Q,€) in terms of the same basis set, sub-
stitutes in Eq. (8), and uses the orthonormal relation for
the basis functions, the Orstein-Zernike equation can be
written as
n Ai(k) . 7 o
k,Q,Q) = ——— U, (k, Q) (k, ). (10
AEQ,9) = 3 2 BEDBE). (10

From the above equation it is easy to see that if C' has
a unit eigenvalue in the E — 0 limit, /\,(E — 0) — 1, the
correlation function h(k, (2, ) is infinite.

We refer to the eigenvector corresponding to unit
eigenvalue as ¥. Since the Goldstone modes are the
direct consequence of the spontaneously broken rota-
tional symmetry, this eigenvector must be simply re-
lated to p. Moreover, we can heuristically argue the
functional dependence of ¥ on p. In the equilibrium
system we are considering, the single-particle probabil-
ity function can be written as p(7,Q2) = p(Q - (7)),
where 7(7) is the direction of the director at position
7 and € is the unit vector oriented in direction €.
The two-particle reduced density, p(®(7,$,Q’), defined
in Sec. II A, is the probability of finding two particles
7 apart and oriented in directions Q and €', respec-
tively. In the system we are considering, it is propor-
tional to (p(Q - (7 + 67(71))) (Y - (R + 6n(r2)))) where
7 is the director of the nematics, Jn(rl), is the fluctu-
ation of the director at position 7; and 71 — 72 = 7.
In the state corresponding to the Goldstone modes, the
director varies slowly in space, p(Q - (7 + 67(71))) =
p(Q) + 220 - 57u(1) ~ p(Q) + 6p(R), where 5p(Q2) is the
change of the density p(€2) due to a rotation of the direc-
tor. Taking the thermal average, the two-particle density
becomes p(? (7,02, Q') ~ p(Q)p(Q’) + 5p(R)6p(Q'). From
the definition of the total correlation function, Eq. (3),
we obtain k(7 Q,Q') ~ p~1(2)p~1(2)6p(R)6p(R’). Us-
ing Eq. (10), we therefore expect the eigenvector ¥ which



2266 HUA ZHONG AND ROLFE G. PETSCHEK 51

corresponds to the Goldstone modes to be proportional
to p~3(2)30().

In order to realize these physical results mathemati-
cally we introduce a Ward identity in nematic systems
with spontaneously broken symmetries. First we exam-
ine the one-point probability density, p(1). Using the
definition Eq. (1), one can express p(1) in terms of the
grand partition function E, p(1) = 2(1)6In=/62(1), where
z is the activity, related to the chemical potential y and
the thermal wavelength Ar by z = Az exp(Bp). In dia-
grammatic nomenclature, p(1) is the sum of z(1) plus all
simple connected diagrams consisting of one white cir-
cle and one or more black z circles and f bonds. Star
product rules and topological reduction can be applied
to these connected diagrams and lead to the following
important conclusion:

Infp(1)/2(1)] = »(1), (11)

where v(1) is the sum of all simple irreducible diagrams
consisting of one white circle, one or more black p circles,
and f bonds. We show some of the possible diagrams in
v(1) in Fig. 1(c). In a nematic system, p(1) or v(1) is
only a function of 2, and we write

() = poe’ @ /2, (12)

where the normalization coefficient Z ensures that
J d2p(€2) = po. Using the above equation, it is straight-
forward to write

5p() = p(R)dv(2). (13)

The relation between the one-particle probability density
and the two-particle density is obtained by simply exam-
ining the variations of v(€2) as a functional of p. In terms
of diagrams, the functional derivative dv(2)/dp(?') is the
sum of those diagrams of v(€2) where a black p circle is
replaced by a white circle [refer to Figs. 1(a) and 1(c)].
In other words, 6v(2)/6p(€2') is the sum of all simple di-
agrams with two white circles, possible black p circles, f
bonds, and which are free of connecting circles. One can
show that the sum of this group of diagrams is indeed the
two-particle direct correlation function c(k — 0,2, ).
The relation

v ()
6p(')

can be regarded as a special case of the definition of
the direct correlation function, ¢(1,2) = édv(1)/dp(2),
which is also equivalent to the Ornstein-Zernike equa-
tion, Eq. (4). Equation (14) is a typical Ward identity
which relates the one-particle function p(2) to the two-
particle correlation function c¢(k,2,Q’). Using Egs. (12),
(13), and the Ward identity, Eq. (14), it is easy to show
that, provided p depends on 2 so that §p(f2), changes
in p due to a rotation of the director, is not zero that
there is an eigenvector ¥ with unit eigenvalue in Eq. (9)
and ¥ = zp~1(Q)6p(R), where z is a normalization coef-
ficient.

To summarize, through the Ward identity we find that
the integral operator C' does have a unit eigenvalue in

= c(k — 0,Q,9Q) (14)

the k — 0 limit. Its corresponding eigenvector is propor-
tional to §p(R2)/p(€2), where dp(2) is the change of the
density p(€2) due to a rotation of the director. Therefore
the singularity in H(E, Q,Q'), or h(l;:, Q,Q') as E — 0 due
to the Goldstone modes can be treated correctly with
proper implementation of the Ward identity.

C. Percus-Yevick closure

In this paper we solve the Ornstein-Zernike equation
only with the Percus-Yevick closure. In this case the di-
rect correlation function c is expected to be short ranged
and complications with long-range fluctuations known to
be important in systems with spontaneously broken con-
tinuous symmetries and to require careful treatment are
absent. We expect h ~ 1/k? in the k¥ — 0 limit, the same
as the transverse susceptibility in ferromagnetic systems
[7, 8]

To ensure the consistency of the closure scheme with
the Ward identity, care must be taken. We will show
through the diagrammtic language that the correlation
function A in the commonly used Percus-Yevick closure
must be replaced by its rotational average (h),ot. The
rotational average on h is physically related to the rota-
tional invariance in these systems. To understand this
physically, it is worthwhile to briefly review the original
paper on the Percus-Yevick approximation [9]. In that
paper, Percus and Yevick analyzed a classical many-body
system by the use of the collective coordinates in which
the potential energy is approximated by an effective po-
tential in terms of force constants for phonon oscillations.
Using the assumption of the separability of the collec-
tive coordinates, they derived the Percus-Yevick closure
and directly related the correlation function A in the clo-
sure and the Ornstein-Zernike equation to the effective
potential. In a system with spontaneously broken sym-
metries the underlying effective potential should still be
rotationally invariant. Therefore the correlation function
entering the Percus-Yevick closure must be rotationally
invariant.

Diagrammatically, the Ward identity, Eq. (14), is an
ezact relation between the one-point probability density
and the two-point correlation function. However, the
Percus-Yevick closure only includes part of all of the pos-
sible diagrams of ¢(1, 2), as reviewed earlier in Sec. II B.
It is easy to see that naive extension of the Percus-Yevick
closure commonly used in systems without a spontaneous
partial order does not satisfy the Ward identity. For ex-
ample, in Fig. 1(c) we illustrate a few possible diagrams
in the one-point density function v(2). The diagram-
matic rule for a functional derivative with respect to p
in the Ward identity is simply to replace any (single)
black circle with a white one. Therefore one possible
diagram derived from the last diagram in Fig. 1(c) is
the bridge diagram shown in Fig. 1(b). This diagram is
clearly excluded in the Percus-Yevick closure. To make
the closure consistent with the Ward identity, rotational
average on the correlation functions is needed. We define
(h(7, K2, Q') rot to be the rotational average of the correla-
tion function h(7, 2, Q’), and the modified Percus-Yevick
closure is written as
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(70, Q) = F(7,Q, Q)1 + (h(F, 2, Q) rot — c(F, 2, )].
(15)

Once this rotational average has been performed the
Ward identity is satisfied, at least for §p proportional
to 6prot, changes in p which can be realized by rota-
tions. Fortunately it is precisely such changes which are
relevant to appropriate behavior with Goldstone modes.
Since the Ursell-Mayer function f(r,$,€Q’) is rotation-
ally invariant, c¢(r, Q,€’) is also rotationally invariant in
Eq. (15). We demonstrate the correct treatment of the
Goldstone modes with the Ward identity and show how
one can solve for the correlation functions with the mod-
ified Percus-Yevick closure using model calculations.

III. MODEL CALCULATIONS

In order to illustrate the principles without unneces-
sary mathematical complications, in the models we as-
sume the orientations of the molecules are confined in
a plane, which can be specified with a single variable
about a fixed axis. The interaction potential is only a
function of the spatial separation r (in three dimensions)
and the relative orientation 6 — ¢’.

A. Model 1

We first illustrate the relationship between Goldstone
modes and the Ward identity using a simple, non-self-
consistent model which can be solved analytically. As-
sume a very weak but possibly long-ranged interac-
tion potential such that the direct correlation function
c(r,0 —0') = f(r,60 — "), where f(r,0 — ') is the Ursell-
Mayer function mentioned above. For simplicity, we as-
sume

e~ €

f(r,0—0") = T—la+beos’(6 — ). (16)

drr

Its Fourier transform f(k,0 — 6’), or c¢(k,0 — ') can be
readily obtained,

1
— 0 PG —
o(k6—0) = ;5

Since the direct correlation function ¢ is a function of
0 — 0', the Ward identity, Eq. (14), can be simplified and
written as

v(8) = /d0’c(k 0,0 — 0')p(8). (18)

[a + bcos?(6 — &')]. (17)

Using Egs. (12), (17), and (18), we can solve for the
probability density p(8),

Po A cos 26
— 19
p(9) 2nlo(A) € ’ (19)

where I, (z) is the modified Bessel function and A satis-
fies the relation
A
2€2 I(A)”

(20)

Notice that the above equation only has solutions when
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pobe™2 > 1. This is essentially the condition to have an
isotropic-nematic phase transition for this model. Equa-
tion (19) can be substituted into the Ornstein-Zernike
equation to solve for the pair correlation function h. As
we consider the particles are confined to be oriented in a
plane, we can expand both ¢ and A in terms of sin and
cos functions and obtain h by solving an integral equa-
tion which is approximated numerically by a finite matrix
inversion, or by solving a Fredholm eigenvalue problem.
We illustrate the matrix inversion technique in Sec. III
B and here we use the eigenvalue method. The matrix
inversion technique is faster than the eigenvalue method,
yet the eigenvalue calculation is clearer. Both techniques
yield the same results.

As mentioned above in Sec. IIB, for convenience we
define

H(k,0,0") = p*/?(0)p*/%(0")h(k, ,6") (21)
and
C(k,0,0') = p'/%(8)p*/2(6")c(k,6,0'), (22)

the Ornstein-Zernike equation
h(k,0,0") = c(k,6,0") + /dBlc(k, 0,61)p(61)h(k,6.,0")

(23)

can then be written as
H(k,0,0') = C(k,0,8') + /dGIC(k,G,el)H(k,ﬂl,H’),

(24)

and it is symmetric with respect to interchange of the
variables 6 and ¢’. Defining the eigenvalues and eigenvec-
tors of the operator C(k,8,6') to be X;(k) and ¥;(k,6),

/dolc(k, 8,0:)T;(k, 01) = Xi (k) ik, 9), (25)
we can write H(k,0,0') as

H(k,0,0') = Z %&%\I}(k 0);(k,0") (26)

according to Eq. (24).

We define the coordinate system such that the axis is
along the nematic director 7. Since in nematic systems
there is no difference between the direction 7 and —n,
the relation C(%,0,0') = C(k,—6,—6") holds. There-
fore its eigenfunction \Ilgk, 6) must be even, ¥(¢)(k,0) =
¥ (k,—0) or odd, ¥ (k,0) = —¥O)(k,—0). As
dp(0)/df ~ sin20, to examine the Goldstone modes we
look at the odd solution in particular. Using Egs. (17),
(19), (22), and (25), it is easy to see that if A # O,
0O (k,0) ~ e? 20 sin 20. With the normalization fac-
tor the odd solution is written as

Le% 0520 gin 20 (27)

\I](O) (k’ 0) = — 27rI1(A)

and its corresponding eigenvalue is
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62
k2 + €2’

2O (k) = (28)

Substituting Egs. (27) and (28) into Eq. (26) and using
Eq. (21), we find the odd part of the solution contributes
a term 2sin260sin26’/k? in h(k,6,6'). This is the solu-
tion for the Goldstone modes. It is easy to check that

il
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the eigenvalue corresponding to the Goldstone modes
A©) (k — 0) is unity and h(k — 0,6,6’) indeed is propor-
tional to 1/k2. Also using Eqgs. (19) and (27), one can ver-
ify that the eigenvector is proportional to p~*(6)8p(6) /00
as predicted by our theory. Combining both the even and
odd eigenvalue solutions for Eq. (25), we obtain the total
correlation function,

b(a + 2b)(2k? + 4€2 — bpy)

b
h(k,0,6') = 55 sin20sin 20’ +

b(2a + b)e? A

2b(k2 + €2 — apo)(2k? + 4€2 — bpo) — 4(b + 2a)e* A2

 b(k2 + €2 — apo)(2k2 + 4€2 — bpg) — 2(b + 2a)e* A2

b2(2k? + 4€2 — bpo)

(cos 20 + cos 26")

+ 2b(k2 + €2 — apo)(2k? + 4€2 — bpg) — 4(b + 2a)e* A2

The first term is the contribution of the Goldstone modes.
This simple analytic model shows that the Goldstone
modes can be treated correctly with the use of the Ward
identity. We have also performed a self-consistent calcu-
lation with the modified Percus-Yevick closure using the
same Ursell-Mayer function, Eq. (16). These calculations
were performed in the weak, long-range potential limit in
which self-consistency is not expected to make a signif-
icant change in the results. We confirmed this and will
not present detailed results here.

B. Model II

The potential for model II consists of the Lennard-
Jones potential and an additional angular dependent po-
tential outside of the “core” region. In other words, we
assume the Ursell-Mayer function in the form of

oroneef )" ()

+bO(r — U)(TTGJ—) cos?(8 —6'), (30)
where the ©(r — o) function indicates that the angular
dependent part of the potential is only effective outside
the “core” region 0. When b = 0 the system is simply
a Lennard-Jones fluid. To test our programs, we have
solved the Ornstein-Zernike equation with the Percus-
Yevick closure and computed the pair correlation func-
tion h(r), inverse compressibility 38p/8p = 1/[1+ ph(0)],
and other related quantities for the simple Lennard-Jones
fluids. These quantities all agree well with others’ results
[14].

In systems where the orientations of the molecules are
confined in two dimensions, the modified Percus-Yevick
closure, Eq. (15), can be written as

o(r,0 — ') = f(r,0 — 0')
X [1 + <h(7‘, 0 — 0’)>rot - C(’I‘, 0— 91)]7 (31)

where (h(r,0 — 6')),,t is the rotational average of
h(r,0,6") defined as

cos 26 cos 26’. (29)

I
1 2 _ _ _
(h(r,0 — 0")) ot = o dOh(r,0 + 6,6’ + 6). (32)
0

Due to the rotational invariance of c(k,8 — '), the
Ward identity can again be written in the simplified form
shown in Eq. (18). To obtain the pair correlation func-
tions and the probability density for the model when
b # 0, we need to solve the Ornstein-Zernike equation,
(23), Ward identity, Eq. (18), and the Percus-Yevick clo-
sure, Eq. (31), self-consistently. We have adopted the
iterative method to solve this set of the equations. In
the model we have assumed the angular dependent part
of the potential to be proportional to cos?(§—§’). There-
fore when the angular dependent quantities are expanded
in terms of sinlf and cos 6, all terms with odd [ are zero
due to the symmetries in the system. Explicitly, we write

v(f) = Z v cos 210, (33)
1

c(r,0—0") = Z ci(r) cos20(6 — ¢'), (34)
1

h(r,0,0") = Z hl(;) cos 210 cos 29’ + h§l°,) sin 210 sin 21’6’
L

(35)
and
(R(r,0 = 0'))rot = > (h(r))rot,1 cos 2L(6 — 0),  (36)

where the relation

(Bl )rors = SHSE () + R ()] (37)

holds. The above expansions also apply to their Fourier
transform counterparts. We begin the iteration with the
initial guess c(V(r,0 — 6') = f(r,0 — ') where the su-
perscript indicates the iteration number. In general for
the nth iteration, we first obtain the Fourier component
c™(k,0 — 0'). Its limit at k — 0 is used in the Ward
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identity, Eq. (18), to determine p{™(#). This involves
solving the following set of integral equations:

v = cz(k)/df" cos 216/ eXhi=o v c0s2L8" /7

[=0,...,n (38)

7 = /dalez;‘lzo vy, cos 20,60’ . (39)
The converged values of v; are then used to calcu-
late the angular part of the integrals in the Ornstein-
Zernike equation. The total correlation function ob-
tained from the Ornstein-Zernike equation h(")(k,8,6’)
is Fourier transformed to h(®)(r,0,6') and its rotational
average is substituted in the modified Percus-Yevick clo-
sure, Eq. (31), to compute c(®*1) (r,§ —@’). This ends the
nth iteration. This procedure is repeated many times un-
til the correlation functions converge.

The Ornstein-Zernike equation can be solved as an
eigenvalue problem as illustrated in Sec. III A or by di-
rectly inverting matrices. Using expansions (33)—(35),
the Ornstein-Zernike equation, Eq. (23), can be written
as :

A, (kYhi,i (k) = ci(k)our, (40)

where for even solutions, hl(f})(k),
Au, (k) = 8u, — cilk) / d6p(6) cos 200cos 21,6 (41)
and for odd solutions, hl(ﬁ)(k),

Au, (k) = 6u, — cu(k) / d6p(6) sin 20 sin2,0.  (42)

One can invert the matrix A;y and multiply matrix
ci(k)éy to obtain hy using Eq. (40). To ensure numer-
ical accuracy to the Orstein-Zernike equation, we have
taken a large basis set, i.e., large enough /,,4, such that
the coefficients for [ > [,,,, are numerically zero.
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For Goldstone modes where the matrix A becomes
nearly singular for k& values close to zero, care must be
taken. Instead of inverting the original matrix, we con-
struct a matrix B = UU¥', where ¥ is the eigenvector
corresponding to the Goldstone modes, and invert the
matrix A + B. The inverse of A is obtained through the
relation

A =(A+B) '+ (A + B)_I‘I'<1 - \IIT(A1+ B)°1‘I’)

x¥t(A+ B)~L (43)
We expect h(k,0,0') ~ ¥(0)¥(0')/k% as k — 0 due to
the Goldstone modes and h(k,0,6') approach to a con-
stant as k — oo. In order to increase the numerical ac-
curacy and to require fewer points in the Fourier trans-
form, we therefore write h(k,6,6') = a®¥(0)¥(0')/k? —
a¥(0)¥(0')/(k? + n?)+h'(k,8,0'). Fourier transforms of
the first two terms are done analytically. The term in-
cluding 7 is included to make this analytic transformation
finite and give the length scale over which the Goldstone
modes cease to have susceptibilities ~ k~2. The parame-
ter a is in principle related to the normalization of ¥ and
the Goldstone mode stiffness and implies k' is small and
slowly varying as k — 0. It was fixed by insisting that A’
for the first two nonzero values of k be equal. The results
are insensitive to a and 7 within reasonable bounds.
Some of the results are shown in Figs. 2-5. The param-
eters are written in terms of the reduced density and tem-
perature which have standard definitions: p§ = No3/V
and T* = kpT/e. The qualitative features of the pair
correlation functions are the same for all the calculations
we have performed with different sets of the parameters.
All the results presented here are done with 1024 points
with Ar = 0.02¢. The correlation function (h(k)),ot, for
ps = 0.8, T* = 1.0, and b = 3.0 is shown in Fig. 2. Com-
ponents for [ higher than unity are too small to be seen
with the scale used in the figure. In the k& — 0 limit, the
singularity of the ! = 1 component is quite prominent,
indicating the presence of the Goldstone modes. The os-
cillations of the correlation function as a function of k&
are typical of a fluid with a highly repulsive core. Higher

< h(k‘) >rot,l

FIG. 2. The total correlation function
(h(k))rot,y for p; = 0.8, T* = 1.0, and
b = 3.0. The divergence of the | = 1 com-
ponent as k — 0 is due to the presence of the

Goldstone modes.
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2 T T T T

< I(r) >roti
15 1

05

d FIG. 3. The total correlation function h
in real space for the ! = 0 component with
b = 0 (crosses) and b = 3.0 (squares). The

o

parameters for pg and T™ are the same as in
Fig. 2.

density and larger values of b lead to longer range of the
oscillations. In Fig. 3 we directly compare the I = 0 com-
ponent of the total correlation function h(r) with b = 0
and b = 3 for the same values of pj and T* as those
used in Fig. 2. With the scale we used in the figure we
cannot tell the difference between the two curves. The
I = 0 component of the direct correlation function ¢;(r)
is essentially the same as the ones for the pure Lennard-
Jones fluid and is not shown here. For r < o, the curve
shows a large dip due to the hard core and it rises sharply
close to o and then quickly vanishes. Figure 4 shows the
I = 1 components of (h(r))rot,r and ¢(r) for p5 = 0.85,
T* = 1.0, and b = 3.5. Both quantities vary on a rela-
tively small scale compared to their [ = 0 counterparts.
Since the angular dependent part of the interaction is
outside the core, in the core region the total correlation
function h(r,0,6’) is strictly —1 as expected and there-

0.25 T T T T

—< h(r) >roti=1

0.2

e ———"
-0.15 " L L L
0 2 4 6 8 10
r/o
FIG. 4. The | = 1 component of the total correlation

function, (h(7))rot,i (crosses) and the direct correlation func-
tion ¢i(r) (squares) with pg = 0.85, T = 1.0, and b = 3.5.
(h'(r))rot,i=1 obtained with two sets of the parameters a =
0.9, n = 0.6 (dash-dotted line) and a = 0.9, n = 2.0 (dashed
line) are also shown in the figure.

fore (h(r))rot,i=1 is zero for r < o. The direct correlation
function ¢;—1(r) shows a sharp rise as for the [ = 0 com-
ponent of ¢;(r). After the sharp peak just outside the
core, both (A(r))rot,1=1 and ¢;=1 () die down rapidly. The
fine structures for both (A(r))rot,1=1 and ¢;=1(r) outside
of the core are not an artifact of the numerical calcula-
tion because their Fourier transforms (h(k))rot,1=1 and
ci=1(k) are both smooth curves as shown in Fig. 5. We
also show the rotationally averaged, I = 1 component
of h'/(k,0,0') (defined earlier in the text) and its Fourier
transform in Figs. 4 and 5. (h'(k))rot,1=1 calculated with
two sets of the parameters a and 7 are explicitly shown in
Fig. 5. With reasonable choices of a and 7, (h'(k))rot,1=1
is a slowly varying function and therefore requires fewer
points in the Fourier transform. The final results of h
and c are independent of choices of the parameters.
This model calculation shows that the Ornstein-
Zernike equation can be solved in conjunction with the
modified Percus-Yevick closure for a nematic system with
spontaneously broken symmetries. With the proper im-
plementation of the Ward identity, the singularity of the

20

—< h(k) >roti=1

1 \
o ci=1(k)

o 05 1 15 2 25 3 35 4 45 5

FIG. 5. The same quantities shown in Fig. 4 plotted in
Fourier space.
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correlation function at £ — 0 due to the Goldstone modes
can be treated correctly.

IV. SUMMARY AND DISCUSSION

For systems with sufficiently strong interparticle in-
teractions, there exists partial orientational order after
the isotropic-nematic phase transition due to sponta-
neous breaking of the continuous rotational symmetry.
Adapting the techniques used in ferromagnetic systems
with spontaneously broken symmetries, we derive a Ward
identity, which relates the one-particle probability den-
sity to the integral of the two-particle density in nematic
systems. We show that the rotational average of the cor-
relation functions is needed in the Percus-Yevick closure
to ensure the correct consequences of rotational invari-
ance due to the Goldstone modes. The modified Percus-
Yevick approximation can be solved with the Ward iden-
tity and the Ornstein-Zernike equation for probability
density and correlation functions of a spontaneously par-
tially ordered system. As our model calculations show,
proper use of the Ward identity results in the correct
treatment of the Goldstone modes, which leads to infi-
nite susceptibility as k¥ — 0. We believe that with more
realistic model interparticle potentials, this technique can
be applied to study the thermodynamic properties of ne-
matic liquid crystals through the pair correlation func-
tions. This technique differs from the use of the stabil-
ity criterion or truncated density functional theory (4,
5], in that it uses the ordered state to calculate the self-
consistent two-point function. Thus self-consistency can
be used even (as in this paper) beyond the stability limit.
Additionally it is possible that the ordered state may not
be terribly closely related to the disordered state—this is
likely in systems with large first-order transitions. In this
case the ability to deal directly with the ordered state

may find transitions lacking in other approaches. As in
an ordered state most of the molecules are, actually, or-
dered, using the ordered state correlation function seems
more likely to result in good interparticle interactions.

It is straightforward to generalize our approach to more
realistic models of a nematic system. For example, calcu-
lations of the Lebwohl-Lasher [15] type of models (similar
to model II discussed in Sec. III) with three-dimensional
“orientation” interactions can be carried out directly fol-
lowing similar procedures described in the paper. In gen-
eral, our approach can be applied to any nematic models
with strong interparticle interactions, such as hard sphe-
rocylinders, hard ellipsoids, or the Gay-Berne [16] type of
models. Mathematically it is easier to treat “separable”
models (such as the Lebwohl-Lasher model) where the
interparticle potential is of the form u(r, (2 - ©)?) than
those more realistic hard spherocylinders, hard ellipsoids,
or Gay-Berne [16] types of models. The mathematical
complications involved in computations of the correla-
tion functions with more realistic models are comparable
to those of isotropic systems consisting of hard parti-
cles, which have been well detailed in Refs. [2-5]. The
main differences would be that the single-particle prob-
ability density p must be self-consistently determined by
the Ward identity, Eq. (14), and the Ornstein-Zernike
equation to be solved, Eq. (5), depends on the angular
dependent particle density p. Such calculations are in
progress.
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